\(4 < a < 5\)
\(3 < a < 4\)
\(a > 5\)
\(2 < a < 3\)
Given:
\[ \frac{\log_{15} a + \log_{32} a}{(\log_{15} a)(\log_{32} a)} = 4 \]
Step 1: Convert to base 10 logarithms
Using the change of base formula: \[ \log_{b} a = \frac{\log a}{\log b} \] So, \[ \frac{\log_{15} a + \log_{32} a}{(\log_{15} a)(\log_{32} a)} = \frac{\frac{\log a}{\log 15} + \frac{\log a}{\log 32}}{\left(\frac{\log a}{\log 15}\right) \left(\frac{\log a}{\log 32}\right)} \]
Step 2: Simplify the expression
Multiply numerator and denominator: \[ \frac{\log a \left( \frac{1}{\log 15} + \frac{1}{\log 32} \right)}{\frac{(\log a)^2}{\log 15 \cdot \log 32}} \] \[ = \frac{\log a \left( \frac{\log 32 + \log 15}{\log 15 \cdot \log 32} \right)}{\frac{(\log a)^2}{\log 15 \cdot \log 32}} \] \[ = \frac{\log a (\log 32 + \log 15)}{(\log a)^2} \] \[ = \frac{(\log 32 + \log 15)}{\log a} \]
Step 3: Use the given equation
\[ \frac{(\log 32 + \log 15)}{\log a} = 4 \Rightarrow \log 32 + \log 15 = 4 \log a \] Using the property \(\log m + \log n = \log (mn)\): \[ \log(32 \cdot 15) = 4 \log a \] \[ \log 480 = \log a^4 \Rightarrow a^4 = 480 \]
Step 4: Estimate the value of \( a \)
Try nearby values:
\[ 4^4 = 256 \quad \text{and} \quad 5^4 = 625 \] So, \[ 256 < a^4 = 480 < 625 \Rightarrow 4 < a < 5 \]
Final Answer: Option (A): \( \boxed{4 < a < 5} \)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?