\[ \ln k = \ln A - \frac{E_a}{R} . \frac{1}{T} \]
Comparing this with the straight-line equation \( y = mx + c \), the slope \( m = -\frac{E_a}{R} \)
\[ \text{Slope} = -\frac{E_a}{R} = -2 \times 10^4 \]
\[ \Rightarrow \frac{E_a}{R} = 2 \times 10^4 \Rightarrow E_a = R . 2 \times 10^4 = 8.3 . 2 \times 10^4 = 1.66 \times 10^5~\text{J mol}^{-1} \]
\[ = \frac{1.66 \times 10^5}{1000} = 166~\text{kJ mol}^{-1} \]
166 kJ mol\(^{-1}\)
If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]