\[ \ln k = \ln A - \frac{E_a}{R} . \frac{1}{T} \]
Comparing this with the straight-line equation \( y = mx + c \), the slope \( m = -\frac{E_a}{R} \)
\[ \text{Slope} = -\frac{E_a}{R} = -2 \times 10^4 \]
\[ \Rightarrow \frac{E_a}{R} = 2 \times 10^4 \Rightarrow E_a = R . 2 \times 10^4 = 8.3 . 2 \times 10^4 = 1.66 \times 10^5~\text{J mol}^{-1} \]
\[ = \frac{1.66 \times 10^5}{1000} = 166~\text{kJ mol}^{-1} \]
166 kJ mol\(^{-1}\)
List-I (Symbol of electrical property) | List-II (Units) |
---|---|
A) \( \Omega \) | I) S cm\(^{-1}\) |
B) G | II) m\(^{-1}\) |
C) \( \kappa \) | III) S cm\(^2\) mol\(^{-1}\) |
D) G\(^*\) | IV) S |
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)