For first-order reactions, remember that the slope of the log(concentration) vs. time plot is always \(\frac{-k}{2.303}\).
For a first-order reaction, the integrated rate law is:
\( \ln[A] = -kt + \ln[A]_0 \)
where [A] is the concentration at time t, k is the rate constant, and \([A]_0\) is the initial concentration. Taking the logarithm to base 10:
\( \log[A] = \frac{-k}{2.303}t + \log[A]_0 \)
This equation is of the form \(y = mx + c\), where:
- \(y = \log[A]\),
- \(x = t\),
- \(m = \frac{-k}{2.303}\),
- \(c = \log[A]_0\).
Thus, the slope of the plot of log(reactant concentration) against time is \(\frac{-k}{2.303}\).
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: