For first-order reactions, remember that the slope of the log(concentration) vs. time plot is always \(\frac{-k}{2.303}\).
For a first-order reaction, the integrated rate law is:
\( \ln[A] = -kt + \ln[A]_0 \)
where [A] is the concentration at time t, k is the rate constant, and \([A]_0\) is the initial concentration. Taking the logarithm to base 10:
\( \log[A] = \frac{-k}{2.303}t + \log[A]_0 \)
This equation is of the form \(y = mx + c\), where:
- \(y = \log[A]\),
- \(x = t\),
- \(m = \frac{-k}{2.303}\),
- \(c = \log[A]_0\).
Thus, the slope of the plot of log(reactant concentration) against time is \(\frac{-k}{2.303}\).
Initial concentration of [𝐴] 𝑚𝑜𝑙 $𝐿 ^{−1}$ | Initial concentration of [𝐵] 𝑚𝑜𝑙$𝐿 ^{−1}$ | Initial rate of formation of [𝐶] 𝑚𝑜𝑙 $𝐿^{−1} 𝑠 ^{−1}$ |
0.2 | 0.2 | 0.3 |
0.4 | 0.2 | 0.6 |
0.4 | 0.4 | 2.4 |