1. Count the base pairs: - Number of A-T pairs = 7. - Number of G-C pairs = 6. 2. Energy for A-T base pairs: \[ \text{Energy} = 7 \times 2 \times 1 \, \text{kcal/mol} = 14 \, \text{kcal/mol}. \] 3. Energy for G-C base pairs: \[ \text{Energy} = 6 \times 2 \times 1.5 \, \text{kcal/mol} = 27 \, \text{kcal/mol}. \] 4. Total energy: \[ \text{Total energy} = 14 + 27 = 41 \, \text{kcal/mol}. \]
In the group analysis of cations, Ba$^{2+}$ & Ca$^{2+}$ are precipitated respectively as
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?