Given the differential equation:
\[\frac{dy}{dx} - 3y = \alpha\]
Let the integrating factor be:
\[I = e^{\int -3dx} = e^{-3x}\]
Multiplying through by the integrating factor:
\[y \cdot e^{-3x} = \int e^{-3x} \cdot \alpha dx\]
Solving for \(y\):
\[y \cdot e^{-3x} = \frac{\alpha e^{-3x}}{-3} + C\]
Multiplying through by \(e^{3x}\):
\[y = \frac{\alpha}{-3} + C \cdot e^{3x}\]
Using the initial condition \(x = 0, y = 1\):
\[1 = \frac{\alpha}{-3} + C \cdot e^0\]
\[C = 1 + \frac{\alpha}{3}\]
As \(x \to -\infty, y \to 7\):
\[y = 7 - 6e^{3x}\]
Finally, evaluating:
\[9f(-\log 3) = 61\]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.