Given the differential equation:
\[\frac{dy}{dx} - 3y = \alpha\]
Let the integrating factor be:
\[I = e^{\int -3dx} = e^{-3x}\]
Multiplying through by the integrating factor:
\[y \cdot e^{-3x} = \int e^{-3x} \cdot \alpha dx\]
Solving for \(y\):
\[y \cdot e^{-3x} = \frac{\alpha e^{-3x}}{-3} + C\]
Multiplying through by \(e^{3x}\):
\[y = \frac{\alpha}{-3} + C \cdot e^{3x}\]
Using the initial condition \(x = 0, y = 1\):
\[1 = \frac{\alpha}{-3} + C \cdot e^0\]
\[C = 1 + \frac{\alpha}{3}\]
As \(x \to -\infty, y \to 7\):
\[y = 7 - 6e^{3x}\]
Finally, evaluating:
\[9f(-\log 3) = 61\]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :