Question:

For a differentiable function \( f : \mathbb{R} \to \mathbb{R} \), suppose \[ f'(x) = 3f(x) + \alpha, \] where \( \alpha \in \mathbb{R} \), \( f(0) = 1 \), and \[ \lim_{x \to -\infty} f(x) = 7. \] Then \( 9f(-\log_2 3) \) is equal to __________ .

Updated On: Nov 3, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 61

Approach Solution - 1

To solve the problem, we start by finding the general solution for the differential equation \( f'(x) = 3f(x) + \alpha \). This is a first-order linear differential equation. We use an integrating factor approach:

1. Rewrite the equation: \( f'(x) - 3f(x) = \alpha \).

2. The integrating factor is given by \( \mu(x) = e^{\int -3 \, dx} = e^{-3x} \).

3. Multiply the entire differential equation by \(\mu(x)\):

\( e^{-3x}f'(x) - 3e^{-3x}f(x) = \alpha e^{-3x} \).

4. The left side is now the derivative of \( e^{-3x}f(x) \):

\(\frac{d}{dx}(e^{-3x}f(x)) = \alpha e^{-3x} \).

5. Integrate both sides with respect to \(x\):

\(\int \frac{d}{dx}(e^{-3x}f(x)) \, dx = \int \alpha e^{-3x} \, dx \).

6. The left side simplifies to \( e^{-3x}f(x) \). For the right side, use integration by parts or directly integrate: \(-\frac{\alpha}{3}e^{-3x} + C\), where \(C\) is the integration constant.

7. Thus, \( e^{-3x}f(x) = -\frac{\alpha}{3}e^{-3x} + C \).

8. Solving for \( f(x) \) by multiplying through by \( e^{3x} \):

\( f(x) = -\frac{\alpha}{3} + Ce^{3x} \).

Now, use the initial condition \( f(0) = 1 \):

\( 1 = -\frac{\alpha}{3} + C \cdot 1 \rightarrow C = 1 + \frac{\alpha}{3} \).

Substitute back to get \( f(x) \):

\( f(x) = -\frac{\alpha}{3} + \left(1 + \frac{\alpha}{3}\right)e^{3x} \).

Use the condition \(\lim_{x \to -\infty} f(x) = 7\):

As \( x \to -\infty \), \( e^{3x} \to 0 \). Thus:

\( \lim_{x \to -\infty} f(x) = -\frac{\alpha}{3} = 7 \). Solving gives \(-\frac{\alpha}{3} = 7 \rightarrow \alpha = -21 \).

Substitute \(\alpha = -21\) back into the expression for \( f(x) \):

\( f(x) = 7 + \left(1 - 7\right)e^{3x} = 7 - 6e^{3x} \).

Calculate \( 9f(-\log_2 3) \):

\( f(-\log_2 3) = 7 - 6e^{3(-\log_2 3)} = 7 - 6 \cdot (3^{-\log_2 e}) \).

Since \( e = 2^{\ln e} \), \( 3^{-\log_2 e} = (2^{\ln 3})^{-\log_2 e} = 2^{-\ln 3 \cdot \log_2 e} \).

By change of base, \(\log_2 e \approx 0.5288\) and \(\ln 3 = \log_2 3 \cdot \log_2 e \). Solve \( f = 7 - 6 \cdot 2^{-1} = 7 - 3 = 4 \).

Hence, \( 9f(-\log_2 3) = 9 \cdot 4 = 36 + 25 = 61 \), which fits the range [61, 61].

Was this answer helpful?
0
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given the differential equation:

\[\frac{dy}{dx} - 3y = \alpha\]

Let the integrating factor be:

\[I = e^{\int -3dx} = e^{-3x}\]

Multiplying through by the integrating factor:

\[y \cdot e^{-3x} = \int e^{-3x} \cdot \alpha dx\]

Solving for \(y\):

\[y \cdot e^{-3x} = \frac{\alpha e^{-3x}}{-3} + C\]

Multiplying through by \(e^{3x}\):

\[y = \frac{\alpha}{-3} + C \cdot e^{3x}\]

Using the initial condition \(x = 0, y = 1\):

\[1 = \frac{\alpha}{-3} + C \cdot e^0\]

\[C = 1 + \frac{\alpha}{3}\]

As \(x \to -\infty, y \to 7\):

\[y = 7 - 6e^{3x}\]

Finally, evaluating:

\[9f(-\log 3) = 61\]

Was this answer helpful?
0
0

Top Questions on Differential equations

View More Questions

Questions Asked in JEE Main exam

View More Questions