Rate mol L-1S-1 | [A] mol L-1 | [B] mol L-1 |
0.10 | 20 | 0.5 |
0.40 | x | 0.5 |
0.80 | 40 | y |
\[ r = k[A][B] \]
where:
Using the given data, we can write the following equations:
Divide equation (2) by equation (1):
\[ \frac{0.40}{0.10} = \frac{k(x)(0.5)}{k(20)(0.5)} \]
Simplify:
\[ 4 = \frac{x}{20} \quad \Rightarrow \quad x = 4 \times 20 = 80 \]
Divide equation (3) by equation (1):
\[ \frac{0.80}{0.10} = \frac{k(40)(Y)}{k(20)(0.5)} \]
Simplify:
\[ 8 = \frac{40Y}{10} \quad \Rightarrow \quad 80 = 40Y \quad \Rightarrow \quad Y = \frac{80}{40} = 2 \]
The values of \( x \) and \( Y \) are 80 and 2, respectively.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: