To ensure continuity of \( f(x) \) at \( x = 0 \), the following condition must hold:
\(\lim_{x \to 0} f(x) = f(0) = 3.\)
Step 1: Evaluating the right-hand limit
We consider:
\(\lim_{x \to 0^+} \frac{\sqrt{ax + b^2x^2} - \sqrt{ax}}{b \sqrt{ax} \sqrt{x}} = 3.\)
Step 2: Rationalizing the numerator
Multiply the numerator and denominator by the conjugate of the numerator:
\(\lim_{x \to 0^+}
\frac{(\sqrt{ax + b^2x^2} - \sqrt{ax})(\sqrt{ax + b^2x^2} + \sqrt{ax})}
{b \sqrt{ax} \sqrt{x} (\sqrt{ax + b^2x^2} + \sqrt{ax})}.\)
Step 3: Simplifying the expression
This becomes:
\(\lim_{x \to 0^+}
\frac{ax + b^2x^2 - ax}{b x^{3/2} (\sqrt{ax + b^2x^2} + \sqrt{ax})}.\)
Step 4: Canceling and simplifying further
\(\lim_{x \to 0^+}
\frac{b^2}{b \sqrt{a} (\sqrt{a + b^2x} + \sqrt{a})}.\)
Step 5: Substituting \( x = 0 \)
\(\frac{b}{\sqrt{a} \cdot 2\sqrt{a}} = \frac{b}{2a}.\)
Step 6: Applying the continuity condition
Since the limit must equal \( f(0) = 3 \), we have:
\(\frac{b}{2a} = 3 \implies \frac{b}{a} = 6.\)
For \( f(x) \) to be continuous at \( x = 0 \), we require:
\(\lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x)\).
Given: \(f(0) = \frac{0}{3} = 0\).
Right-hand limit:
Consider:
\(\lim_{x \to 0^+} \frac{\sqrt{ax + b^2x^2} - \sqrt{ax}}{b \sqrt{ax}}\).
To simplify, multiply the numerator and the denominator by the conjugate of the numerator:
\(\lim_{x \to 0^+} \frac{(\sqrt{ax + b^2x^2} - \sqrt{ax}) \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}{b \sqrt{ax} \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}\).
This simplifies to:
\(\lim_{x \to 0^+} \frac{ax + b^2x^2 - ax}{b \sqrt{ax} \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}\).
Simplifying further:
\(\lim_{x \to 0^+} \frac{b^2x^2}{b \sqrt{ax} \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}\).
Canceling terms and simplifying:
\(\lim_{x \to 0^+} \frac{bx}{\sqrt{a} \times 2 \sqrt{ax}} = \frac{b}{2a}\).
For continuity, we equate this limit to the value of \( f(0) \):
\(\frac{b}{2a} = 3 \implies \frac{b}{a} = 6\).
Therefore:
\(\boxed{6}\).
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.