Question:

For \(a, b > 0\), let \[ f(x) = \begin{cases} \frac{\tan((a+1)x) + b \tan x}{x}, & x < 0, \\ \frac{x}{3}, & x = 0, \\ \frac{\sqrt{ax + b^2x^2} - \sqrt{ax}}{b\sqrt{a x \sqrt{x}}}, & x > 0 \end{cases} \] be a continuous function at \(x = 0\). Then \(\frac{b}{a}\) is equal to:

Updated On: Nov 24, 2024
  • 5
  • 4
  • 8
  • 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

For \( f(x) \) to be continuous at \( x = 0 \), we require:
\(\lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x)\).
Given: \(f(0) = \frac{0}{3} = 0\).
Right-hand limit: 

Consider:
\(\lim_{x \to 0^+} \frac{\sqrt{ax + b^2x^2} - \sqrt{ax}}{b \sqrt{ax}}\).
To simplify, multiply the numerator and the denominator by the conjugate of the numerator:
\(\lim_{x \to 0^+} \frac{(\sqrt{ax + b^2x^2} - \sqrt{ax}) \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}{b \sqrt{ax} \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}\).
This simplifies to:
\(\lim_{x \to 0^+} \frac{ax + b^2x^2 - ax}{b \sqrt{ax} \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}\).
Simplifying further:
\(\lim_{x \to 0^+} \frac{b^2x^2}{b \sqrt{ax} \times (\sqrt{ax + b^2x^2} + \sqrt{ax})}\).
Canceling terms and simplifying:
\(\lim_{x \to 0^+} \frac{bx}{\sqrt{a} \times 2 \sqrt{ax}} = \frac{b}{2a}\).
For continuity, we equate this limit to the value of \( f(0) \):
\(\frac{b}{2a} = 3 \implies \frac{b}{a} = 6\).
Therefore:
\(\boxed{6}\).

Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Questions Asked in JEE Main exam

View More Questions