Step 1: Lens Maker's Formula The focal length \( f \) of a convex lens in air is given by the lens maker’s formula: \[ \frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] where \( \mu \) is the refractive index of the lens material, and \( R_1, R_2 \) are the radii of curvature of the lens surfaces.
Step 2: Modified Lens Maker’s Formula in a Medium When the lens is immersed in a medium of refractive index \( \mu_m \), the modified formula becomes: \[ \frac{1}{f_m} = \left( \frac{\mu_{{lens}}}{\mu_m} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] Dividing both equations: \[ \frac{f}{f_m} = \frac{\mu - 1}{\frac{\mu}{\mu_m} - 1} \]
Step 3: Substituting Given Values
Given:
- Refractive index of the lens: \( \mu = 1.5 \)
- Refractive index of water: \( \mu_m = \frac{4}{3} \)
- Focal length in air: \( f = 3 \) cm \[ \frac{f}{f_m} = \frac{1.5 - 1}{\frac{1.5}{\frac{4}{3}} - 1} \] \[ \frac{f}{f_m} = \frac{0.5}{\frac{1.5 \times 3}{4} - 1} = \frac{0.5}{\frac{4.5}{4} - 1} \] \[ \frac{f}{f_m} = \frac{0.5}{\frac{4.5 - 4}{4}} = \frac{0.5}{\frac{0.5}{4}} = \frac{0.5 \times 4}{0.5} = 4 \] \[ f_m = 4f = 4 \times 3 = 12 { cm} \]
Thus, the new focal length of the lens in water is 12 cm.
Consider the sound wave travelling in ideal gases of $\mathrm{He}, \mathrm{CH}_{4}$, and $\mathrm{CO}_{2}$. All the gases have the same ratio $\frac{\mathrm{P}}{\rho}$, where P is the pressure and $\rho$ is the density. The ratio of the speed of sound through the gases $\mathrm{v}_{\mathrm{He}}: \mathrm{v}_{\mathrm{CH}_{4}}: \mathrm{v}_{\mathrm{CO}_{2}}$ is given by