Step 1: Find the LCM of the intervals.
\[
\mathrm{LCM}(6,5,7,10,12)=\mathrm{LCM}(2\cdot3,\ 5,\ 7,\ 2\cdot5,\ 2^2\cdot3)=2^2\cdot3\cdot5\cdot7=420\ \text{s}.
\]
Step 2: Count how many multiples of 420 s occur in one hour.
One hour \(=3600\) s. The bells coincide at \(t=420, 840, \ldots\) up to \( \le 3600\).
Number of coincidences (excluding \(t=0\)) is
\[
\left\lfloor \frac{3600}{420} \right\rfloor = 8.
\]
\[
\boxed{8\ \text{times}}
\]