\[ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} \]
\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).
A current-carrying rectangular loop PQRS is made of uniform wire. The length PR = QS = \( 5 \, \text{cm} \) and PQ = RS = \( 100 \, \text{cm} \). If the ammeter current reading changes from \( I \) to \( 2I \), the ratio of magnetic forces per unit length on the wire PQ due to wire RS in the two cases respectively \( F^{I}_{PQ} : F^{2I}_{PQ} \) is:
A real gas within a closed chamber at \( 27^\circ \text{C} \) undergoes the cyclic process as shown in the figure. The gas obeys the equation \( PV^3 = RT \) for the path A to B. The net work done in the complete cycle is (assuming \( R = 8 \, \text{J/molK} \)):
Figure shows a part of an electric circuit. The potentials at points \( a, b, \text{and} \, c \) are \( 30 \, \text{V}, 12 \, \text{V}, \, \text{and} \, 2 \, \text{V} \), respectively. The current through the \( 20 \, \Omega \) resistor will be: