>
Exams
>
Mathematics
>
Fundamental Theorem of Calculus
>
find z1z2 when z1 6 2i and z2 2 i
Question:
Find
z
1
z
2
, when
z
1
=
6
+
2
i
and
z
2
=
2
−
i
.
MHT CET
Updated On:
Jul 27, 2024
(A)
(
1
+
i
)
(B)
2
(
1
+
i
)
(C)
2
+
i
(D)
(
1
−
i
)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Explanation:
Given,
z
1
=
6
+
2
i
...(1)
z
2
=
2
−
i
...(2)On dividing equation (1) and (2), we get
z
1
z
2
=
6
+
2
i
2
−
i
Multiplying by
(
2
+
i
)
in numerator and denominator, we get
z
1
z
2
=
6
+
2
i
2
−
i
×
2
+
i
2
+
i
⇒
z
1
z
2
=
12
+
6
i
+
4
i
+
2
i
2
2
2
−
i
2
⇒
z
1
z
2
=
12
+
10
i
+
2
×
(
−
1
)
4
−
(
−
1
)
[
∵
i
2
=
−
1
]
⇒
z
1
z
2
=
12
+
10
i
−
2
4
+
1
⇒
z
1
z
2
=
10
+
10
i
5
⇒
z
1
z
2
=
10
(
1
+
i
)
5
⇒
z
1
z
2
=
2
(
1
+
i
)
Hence, the correct option is (B).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Fundamental Theorem of Calculus
The area enclosed between the curve \(y = \log_e(x + e)\) and the coordinate axes is:
BITSAT - 2025
Mathematics
Fundamental Theorem of Calculus
View Solution
Evaluate the sum:
$$ \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} $$
BITSAT - 2025
Mathematics
Fundamental Theorem of Calculus
View Solution
Let $ \mathbb{R} $ denote the set of all real numbers. Let $ f: \mathbb{R} \to \mathbb{R} $ be defined by $$ f(x) = \begin{cases} \dfrac{6x + \sin x}{2x + \sin x}, & \text{if } x \ne 0 \\ \dfrac{7}{3}, & \text{if } x = 0 \end{cases} $$ Then which of the following statements is (are) TRUE?
JEE Advanced - 2025
Mathematics
Fundamental Theorem of Calculus
View Solution
Let $ x_0 $ be the real number such that $ e^{x_0} + x_0 = 0 $. For a given real number $ \alpha $, define $$ g(x) = \frac{3xe^x + 3x - \alpha e^x - \alpha x}{3(e^x + 1)} $$ for all real numbers $ x $. Then which one of the following statements is TRUE?
JEE Advanced - 2025
Mathematics
Fundamental Theorem of Calculus
View Solution
Let $\mathbb{R}$ denote the set of all real numbers. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to (0,4)$ be functions defined by $$ f(x) = \log_e (x^2 + 2x + 4), \quad \text{and} \quad g(x) = \frac{4}{1 + e^{-2x}}. $$ Define the composite function $f \circ g^{-1}$ by $(f \circ g^{-1})(x) = f(g^{-1}(x))$, where $g^{-1}$ is the inverse of the function $g$. Then the value of the derivative of the composite function $f \circ g^{-1}$ at $x=2$ is _____.
JEE Advanced - 2025
Mathematics
Fundamental Theorem of Calculus
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions