Step 1: Find the zeroes.
Solve $x^2-5=0 $\Rightarrow$ x=\pm\sqrt{5}$. Thus the zeroes are $\alpha=\sqrt{5}$ and $\beta=-\sqrt{5}$.
Step 2: Verify relationships.
For $ax^2+bx+c$, sum of zeroes $=\,-\dfrac{b}{a}$ and product $=\,\dfrac{c}{a}$.
Here $a=1,\ b=0,\ c=-5$.
Sum: $\alpha+\beta=\sqrt{5}+(-\sqrt{5})=0\ = -\dfrac{b}{a}=-\dfrac{0}{1}=0$.
Product: $\alpha\beta=\sqrt{5}\cdot(-\sqrt{5})=-5\ = \dfrac{c}{a}=\dfrac{-5}{1}=-5$.
\boxed{\text{Zeroes: }\sqrt{5},\ -\sqrt{5}\ \ \text{and both relations are verified.}}
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. (i)\(\dfrac{1}{4} , 1\) (ii) \(\sqrt 2 , \dfrac{1}{3}\) (iii) \(0, \sqrt5\) (iv) \(1, 1\) (v) \(-\dfrac{1}{4} ,\dfrac{1}{4}\)(vi) \(4, 1\)
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.