Step 1: Given polynomial.
\[
p(x) = 3x^2 - x - 4
\]
Here, \( a = 3, \; b = -1, \; c = -4 \).
Step 2: Use the quadratic formula to find the zeroes.
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Substitute the values:
\[
x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-4)}}{2(3)} = \frac{1 \pm \sqrt{1 + 48}}{6} = \frac{1 \pm \sqrt{49}}{6}
\]
\[
x = \frac{1 \pm 7}{6}
\]
Step 3: Calculate the two roots.
\[
x_1 = \frac{1 + 7}{6} = \frac{8}{6} = \frac{4}{3}
\]
\[
x_2 = \frac{1 - 7}{6} = \frac{-6}{6} = -1
\]
Step 4: Verify the relationships between the zeroes and coefficients.
Sum of zeroes \( = x_1 + x_2 = \frac{4}{3} - 1 = \frac{1}{3} \).
Product of zeroes \( = x_1 \times x_2 = \frac{4}{3} \times (-1) = -\frac{4}{3} \).
Now,
\[
-\frac{b}{a} = -\frac{-1}{3} = \frac{1}{3}, \quad \frac{c}{a} = \frac{-4}{3}
\]
Hence verified:
\[
\text{Sum of zeroes} = -\frac{b}{a}, \quad \text{Product of zeroes} = \frac{c}{a}
\]
Step 5: Conclusion.
The zeroes are \( \boxed{\frac{4}{3} \text{ and } -1} \), and the relationship between zeroes and coefficients is verified.