Given:
Vertices of rectangle:
\(A(2, -2)\), \(B(8, 4)\), \(C(4, 8)\), \(D(-2, 2)\)
Step 1: Use distance formula to find diagonal \(AC\)
Distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Coordinates:
\(A = (2, -2)\), \(C = (4, 8)\)
Calculate:
\[
AC = \sqrt{(4 - 2)^2 + (8 - (-2))^2} = \sqrt{2^2 + 10^2} = \sqrt{4 + 100} = \sqrt{104}
\]
Step 2: Simplify \(\sqrt{104}\)
Prime factorization:
\[
104 = 4 \times 26
\]
\[
AC = \sqrt{4 \times 26} = \sqrt{4} \times \sqrt{26} = 2 \sqrt{26}
\]
Step 3: Use distance formula to find diagonal \(BD\)
Coordinates:
\(B = (8, 4)\), \(D = (-2, 2)\)
Calculate:
\[
BD = \sqrt{(-2 - 8)^2 + (2 - 4)^2} = \sqrt{(-10)^2 + (-2)^2} = \sqrt{100 + 4} = \sqrt{104} = 2 \sqrt{26}
\]
Final Answer:
Length of the diagonal is:
\[
\boxed{2 \sqrt{26}}
\]