Question:

Find the volume of a sphere whose surface area is 154 cm2.

Updated On: Nov 17, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let the radius of the sphere be r.
Surface area of sphere = 4\(\pi\)r= 154 cm
Volume of a sphere = \(\frac{4}{3}\pi\)r3
\(⇒\) Surface area of the sphere = 4\(\pi\)r2 = 154cm²
r2 = \(\frac{154\ cm^2 }{ 4\pi}\)

r2 = (154 cm2\(÷\) (4 × \(\frac{22}{7}\))

r = \(\sqrt{\frac{49}{4}}\)cm²

r = \(\frac{7}{2}\) cm

Now, radius of the sphere = \(\frac{7}{2}\) cm

So, volume of the sphere = \(\frac{4}{3}\pi\)r3

\(\frac{4}{3}\) × \(\frac{22}{7}\) × \(\frac{7}{2}\) cm × \(\frac{7}{2}\) cm × \(\frac{7}{2}\) cm

\(\frac{539}{3}\) cm3

Therefore, volume of the sphere is \(\frac{539}{3}\) cm3.

Was this answer helpful?
0
0