Let the radius of the sphere be r.
Surface area of sphere = 4\(\pi\)r2 = 154 cm2
Volume of a sphere = \(\frac{4}{3}\pi\)r3
\(⇒\) Surface area of the sphere = 4\(\pi\)r2 = 154cm²
r2 = \(\frac{154\ cm^2 }{ 4\pi}\)
r2 = (154 cm2) \(÷\) (4 × \(\frac{22}{7}\))
r = \(\sqrt{\frac{49}{4}}\)cm²
r = \(\frac{7}{2}\) cm
Now, radius of the sphere = \(\frac{7}{2}\) cm
So, volume of the sphere = \(\frac{4}{3}\pi\)r3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × \(\frac{7}{2}\) cm × \(\frac{7}{2}\) cm × \(\frac{7}{2}\) cm
= \(\frac{539}{3}\) cm3
Therefore, volume of the sphere is \(\frac{539}{3}\) cm3.
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)