Let the radius of the sphere be r.
Surface area of sphere = 4\(\pi\)r2 = 154 cm2
Volume of a sphere = \(\frac{4}{3}\pi\)r3
\(⇒\) Surface area of the sphere = 4\(\pi\)r2 = 154cm²
r2 = \(\frac{154\ cm^2 }{ 4\pi}\)
r2 = (154 cm2) \(÷\) (4 × \(\frac{22}{7}\))
r = \(\sqrt{\frac{49}{4}}\)cm²
r = \(\frac{7}{2}\) cm
Now, radius of the sphere = \(\frac{7}{2}\) cm
So, volume of the sphere = \(\frac{4}{3}\pi\)r3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × \(\frac{7}{2}\) cm × \(\frac{7}{2}\) cm × \(\frac{7}{2}\) cm
= \(\frac{539}{3}\) cm3
Therefore, volume of the sphere is \(\frac{539}{3}\) cm3.
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?