Step 1: Recall the distance formula.
\[
\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Step 2: Substitute the given values.
\[
10 = \sqrt{(13 - 5)^2 + (y - (-3))^2}
\]
\[
10 = \sqrt{8^2 + (y + 3)^2}
\]
Step 3: Simplify.
\[
10 = \sqrt{64 + (y + 3)^2}
\]
\[
100 = 64 + (y + 3)^2
\]
\[
(y + 3)^2 = 36
\]
Step 4: Solve for \( y \).
\[
y + 3 = \pm 6
\]
Case 1: \( y + 3 = 6 \Rightarrow y = 3 \)
Case 2: \( y + 3 = -6 \Rightarrow y = -9 \)
Step 5: Conclusion.
Hence, the values of \( y \) are \( \boxed{3 \text{ and } -9} \).