We know the following properties of the unit vectors \( i, j, k \):
\[
i \cdot i = 1, j \cdot j = 1, k \cdot k = 1
\]
and
\[
i \cdot j = 0, j \cdot k = 0, i \cdot k = 0 \text{(since they are orthogonal)}.
\]
The given expression is:
\[
i \cdot i + j \cdot j + 2k \cdot k
\]
Substitute the values:
\[
= 1 + 1 + 2(1) = 1 + 1 + 2 = 4
\]
Thus,
\[
\boxed{4}
\]