We are tasked with evaluating: \[ \sin 75^\circ \times \sin 15^\circ \times \sin 45^\circ \] We can use the known values of these sine functions: - \( \sin 75^\circ = \sin (45^\circ + 30^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4} \) - \( \sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) - \( \sin 45^\circ = \frac{\sqrt{2}}{2} \) Now, calculate the product: \[ \sin 75^\circ \times \sin 15^\circ \times \sin 45^\circ = \left( \frac{\sqrt{6} + \sqrt{2}}{4} \right) \times \left( \frac{\sqrt{6} - \sqrt{2}}{4} \right) \times \frac{\sqrt{2}}{2} \] First, simplify the product of \( \sin 75^\circ \) and \( \sin 15^\circ \): \[ \left( \frac{\sqrt{6} + \sqrt{2}}{4} \right) \times \left( \frac{\sqrt{6} - \sqrt{2}}{4} \right) = \frac{(\sqrt{6})^2 - (\sqrt{2})^2}{16} = \frac{6 - 2}{16} = \frac{4}{16} = \frac{1}{4} \] Now, multiply by \( \sin 45^\circ \): \[ \frac{1}{4} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{8} \]
Thus, the value is \( \frac{1}{8} \).
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
The following data were obtained for the reaction: \[ 2NO(g) + O_2(g) \rightarrow 2N_2O(g) \] at different concentrations:
The rate law of this reaction is: