We are asked to evaluate the definite integral \( \int_a^b x^2 \, dx \) using the limit of a sum. The definition of a definite integral is:
\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x,
\]
where \( \Delta x = \frac{b - a}{n} \) is the width of each subinterval and \( x_i \) are sample points in the subintervals.
For the function \( f(x) = x^2 \), the Riemann sum is:
\[
\sum_{i=1}^{n} \left( \frac{a + i \Delta x}{n} \right)^2 \Delta x.
\]
Thus, the integral becomes:
\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left( \frac{a + i \Delta x}{n} \right)^2 \Delta x = \lim_{n \to \infty} \int_a^b x^2 \, dx = \frac{b^3}{3} - \frac{a^3}{3}.
\]
Final Answer:
\[
\boxed{\frac{b^3}{3} - \frac{a^3}{3}}.
\]