Question:

Find the direction-cosines of the sum of the vectors \( \vec{a} = 3\hat{i} + 4\hat{j} - 3\hat{k} \) and \( \vec{b} = -2\hat{i} - 3\hat{j} + \hat{k} \).

Show Hint

Finding the direction cosines is equivalent to finding the components of the unit vector along the given vector. Both processes involve dividing the vector's components by its magnitude.
Updated On: Sep 5, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Understanding the Concept:
Direction cosines of a vector are the cosines of the angles the vector makes with the positive x, y, and z axes. For a vector \( \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \), the direction cosines are \( \frac{x}{|\vec{r}|} \), \( \frac{y}{|\vec{r}|} \), and \( \frac{z}{|\vec{r}|} \). We first need to find the sum of the given vectors.
Step 2: Key Formula or Approach:
1. Calculate the resultant vector \( \vec{s} = \vec{a} + \vec{b} \).
2. Find the magnitude of the resultant vector, \( |\vec{s}| \).
3. The direction cosines (l, m, n) are the components of the unit vector in the direction of \( \vec{s} \).
Step 3: Detailed Explanation:
Given vectors are: \[ \vec{a} = 3\hat{i} + 4\hat{j} - 3\hat{k} \] \[ \vec{b} = -2\hat{i} - 3\hat{j} + \hat{k} \] First, find the sum \( \vec{s} = \vec{a} + \vec{b} \): \[ \vec{s} = (3 - 2)\hat{i} + (4 - 3)\hat{j} + (-3 + 1)\hat{k} \] \[ \vec{s} = 1\hat{i} + 1\hat{j} - 2\hat{k} \] Next, find the magnitude of \( \vec{s} \): \[ |\vec{s}| = \sqrt{(1)^2 + (1)^2 + (-2)^2} \] \[ |\vec{s}| = \sqrt{1 + 1 + 4} = \sqrt{6} \] Now, calculate the direction cosines: \[ l = \frac{x}{|\vec{s}|} = \frac{1}{\sqrt{6}} \] \[ m = \frac{y}{|\vec{s}|} = \frac{1}{\sqrt{6}} \] \[ n = \frac{z}{|\vec{s}|} = \frac{-2}{\sqrt{6}} \] Step 4: Final Answer:
The direction-cosines of the sum of the vectors are \( \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right) \).
Was this answer helpful?
0
0