Given:
\[
\cos x + \cos^2 x = 1
\]
Rearranging:
\[
\cos^2 x = 1 - \cos x
\]
Since \( \sin^2 x = 1 - \cos^2 x \), substitute \( \cos^2 x \) from the equation:
\[
\sin^2 x = 1 - (1 - \cos x) = \cos x
\]
Now, \( \sin^4 x = (\sin^2 x)^2 = (\cos x)^2 = \cos^2 x \).
Thus:
\[
\sin^2 x + \sin^4 x = \cos x + \cos^2 x = 1
\]