To solve the problem, we need to evaluate the logarithmic expression \( \log_{0.1} 0.01 \).
1. Understanding the Logarithmic Identity:
Recall that \( \log_b a = x \) means \( b^x = a \). So we want to find the power to which 0.1 must be raised to get 0.01.
2. Converting to Powers of 10:
We know:
So, the expression becomes:
\( \log_{10^{-1}} 10^{-2} \)
3. Using Change of Base Formula:
We apply the formula:
\( \log_b a = \frac{\log a}{\log b} \)
So: \[ \log_{10^{-1}} 10^{-2} = \frac{\log 10^{-2}}{\log 10^{-1}} = \frac{-2}{-1} = 2 \]
Final Answer:
The value of \( \log_{0.1} 0.01 \) is 2 (Option B).
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :