Given the nth term of the A.P.:
\[ a_n = 5 + 2n \]
First term: \[ a_1 = 5 + 2(1) = 7 \] Second term: \[ a_2 = 5 + 2(2) = 9 \] Common difference: \[ d = a_2 - a_1 = 9 - 7 = 2 \]
Note: For linear expressions of \( a_n \), the coefficient of \( n \) directly gives the common difference.
The formula for the sum of the first \( n \) terms is: \[ S_n = \frac{n}{2}[2a + (n - 1)d] \]
Substituting \( n = 20 \), \( a = 7 \), and \( d = 2 \): \[ S_{20} = \frac{20}{2}[2(7) + (20 - 1)(2)] = 10[14 + 38] = 10 \times 52 = \boxed{520} \]
Let \( a_n = 52 \). Solve: \[ 5 + 2n = 52 \Rightarrow 2n = 47 \Rightarrow n = \frac{47}{2} = 23.5 \]
Since \( n \) must be a positive integer, 52 is not a term of this A.P.
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।