Question:

Find the solubility product of \( \mathrm{Ba(OH)_2} \)?
Where \( S = 1.73 \times 10^{-14} \).

Show Hint

When solving solubility product problems, remember to account for the stoichiometric coefficients in the dissociation equation. Multiply the solubility by the appropriate power for each ion's concentration.
Updated On: Jan 16, 2025
  • \( 20.7 \times 10^{-42} \)
  • \( 1.73 \times 10^{-28} \)
  • \( 3.24 \times 10^{-42} \)
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The solubility product (\( K_{sp} \)) of \( \mathrm{Ba(OH)_2} \) can be calculated using its solubility (\( S \)). 

Step 1: Dissociation of \( \mathrm{Ba(OH)_2} \).} 
\( \mathrm{Ba(OH)_2} \) dissociates in water as: \[ \mathrm{Ba(OH)_2 \, \longrightarrow \, Ba^{2+} + 2OH^-}. \] 

Let the solubility of \( \mathrm{Ba(OH)_2} \) be \( S \). Then, the concentrations of the ions at equilibrium are: \begin{itemize} \( [\mathrm{Ba^{2+}}] = S \), \( [\mathrm{OH^-}] = 2S \). \end{itemize} 

Step 2: Solubility product expression. 
The solubility product (\( K_{sp} \)) is given by: \[ K_{sp} = [\mathrm{Ba^{2+}}] \cdot [\mathrm{OH^-}]^2. \] Substitute the concentrations: \[ K_{sp} = S \cdot (2S)^2. \] Simplify: \[ K_{sp} = S \cdot 4S^2 = 4S^3. \] 

Step 3: Calculate \( K_{sp} \). 
Substitute \( S = 1.73 \times 10^{-14} \): \[ K_{sp} = 4 \cdot (1.73 \times 10^{-14})^3. \] 
Calculate \( (1.73)^3 \): \[ 1.73^3 \approx 5.17. \] Calculate \( (10^{-14})^3 \): \[ (10^{-14})^3 = 10^{-42}. \] 

Substitute into the equation: \[ K_{sp} = 4 \cdot 5.17 \cdot 10^{-42}. \] 

Simplify: \[ K_{sp} = 20.7 \times 10^{-42}. \] Thus, the solubility product is: \[ K_{sp} = 20.7 \times 10^{-42}. \]

Was this answer helpful?
0
0

Top Questions on Equilibrium

View More Questions