The given curve is y = x3 − 3x + 2
=\(\frac{dy}{dx}\)=3x2-3
The slope of the tangent to a curve at (x0, y0) is \((\frac{dy}{dx})\bigg] _{ (x_0,y_0)}\).
Hence, the slope of the tangent at the point where the x-coordinate is 3 is given by,
\((\frac{dy}{dx}) \bigg]_{x=3}\)=3x2-3]x=3=3(3)2-3=27-3=24.
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
m×n = -1