It is given that x = acos3 θ and y = asin3 θ.
\(\frac{dx}{dθ}\)=3a cos2θ(-sinθ)=-3a cos2θ sinθ
\(\frac{dy}{dθ}\)=3a sin2θ(cosθ)
\(\frac{dy}{dx}\)=\( \frac{(\frac{dy}{dθ}) }{ (\frac{dx}{dθ}) }\)=\(\frac{3asin^2θ\,cosθ}{-3acos^2θ\,sinθ}\)= \(\frac{-sinθ}{cosθ}\)=-tanθ
Therefore, the slope of the tangent at \(θ=\frac{π}{4}\) is given by,
\((\frac{dy}{dx}) \bigg]_{θ=\frac{π}{4}}\)=\(-tanθ\bigg]_{θ=\frac{π}{4}}\)=-tan\(\frac{ π}{4}\)=-1
Hence, the slope of the normal at \(θ=\frac{π}{4}\) is given by,
\(\frac{1}{\text{slop of the tangent at} \,θ=\frac{π}{4}}= (\frac{-1}{-1}) =1\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
m×n = -1