It is given that x =1−a sin θ and y = b cos2 θ.
\(\frac{dx}{dθ}\)=-acosθ and \(\frac{dy}{dθ}\)=2b cosθ(-sinθ)=-2bsinθcosθ
\(\frac{dy}{dx}\)=(\(\frac{(\frac{dy}{dθ}) }{ (\frac{dx}{dθ}) }\)=\(\frac{-2b\, sinθ\,cosθ}{-a\, cosθ}\)=\(\frac {2b}{b}\) sinθ
Therefore, the slope of the tangent at \(θ=\frac{π}{2}\) is given by,
\((\frac{dy}{dx}) \bigg]_{θ=\frac{π}{2}}\)=\((\frac {2b}{b}) sinθ\bigg]_{θ=\frac{π}{2}}\)= \(\frac {2b}{b}\) sin \(\frac{π}{2}\)=\(\frac {2b}{b}\)
Hence, the slope of the normal at \(θ=\frac{π}{2}\) is given by,
\(\frac{1}{\text{slope of the tangent at} θ=\frac{π}{4}}\)=-\(\frac1{\frac {2b}{b} }\)=\(\frac {a}{2b}\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
m×n = -1