It is given that x =1−a sin θ and y = b cos2 θ.
\(\frac{dx}{dθ}\)=-acosθ and \(\frac{dy}{dθ}\)=2b cosθ(-sinθ)=-2bsinθcosθ
\(\frac{dy}{dx}\)=(\(\frac{(\frac{dy}{dθ}) }{ (\frac{dx}{dθ}) }\)=\(\frac{-2b\, sinθ\,cosθ}{-a\, cosθ}\)=\(\frac {2b}{b}\) sinθ
Therefore, the slope of the tangent at \(θ=\frac{π}{2}\) is given by,
\((\frac{dy}{dx}) \bigg]_{θ=\frac{π}{2}}\)=\((\frac {2b}{b}) sinθ\bigg]_{θ=\frac{π}{2}}\)= \(\frac {2b}{b}\) sin \(\frac{π}{2}\)=\(\frac {2b}{b}\)
Hence, the slope of the normal at \(θ=\frac{π}{2}\) is given by,
\(\frac{1}{\text{slope of the tangent at} θ=\frac{π}{4}}\)=-\(\frac1{\frac {2b}{b} }\)=\(\frac {a}{2b}\)
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
m×n = -1
