It is given that x =1−a sin θ and y = b cos2 θ.
\(\frac{dx}{dθ}\)=-acosθ and \(\frac{dy}{dθ}\)=2b cosθ(-sinθ)=-2bsinθcosθ
\(\frac{dy}{dx}\)=(\(\frac{(\frac{dy}{dθ}) }{ (\frac{dx}{dθ}) }\)=\(\frac{-2b\, sinθ\,cosθ}{-a\, cosθ}\)=\(\frac {2b}{b}\) sinθ
Therefore, the slope of the tangent at \(θ=\frac{π}{2}\) is given by,
\((\frac{dy}{dx}) \bigg]_{θ=\frac{π}{2}}\)=\((\frac {2b}{b}) sinθ\bigg]_{θ=\frac{π}{2}}\)= \(\frac {2b}{b}\) sin \(\frac{π}{2}\)=\(\frac {2b}{b}\)
Hence, the slope of the normal at \(θ=\frac{π}{2}\) is given by,
\(\frac{1}{\text{slope of the tangent at} θ=\frac{π}{4}}\)=-\(\frac1{\frac {2b}{b} }\)=\(\frac {a}{2b}\)
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?
m×n = -1