Find the shortest distance between lines \(\overrightarrow{r}\)=\(6\hat i+2\hat j+2\hat k\)+λ(\(\hat i+2\hat j+2\hat k\))and\(\overrightarrow{r}\)=-\(-4\hat i-\hat k\)+μ(\(3\hat i+2\hat j+2\hat k\)).
The given lines are
\(\overrightarrow{r}\)=\(6\hat i+2\hat j+2\hat k\)+λ(\(\hat i+2\hat j+2\hat k\))...(1)
\(\overrightarrow{r}\)=\(-4\hat i-\hat k\)+μ(\(3\hat i+2\hat j+2\hat k\))...(2)
It is known that the shortest distance between two lines,\(\overrightarrow{r}\)=\(\overrightarrow{a_1}\)+λ\(\overrightarrow{b_1}\)and \(\overrightarrow{r}\)=\(\overrightarrow{a_2}\)+λ\(\overrightarrow{b_2}\), is given by
d=|(\(\overrightarrow{b_1}\)×\(\overrightarrow{b_2}\)).(\(\overrightarrow{a_2}\)-\(\overrightarrow{a_1}\)) / |\(\overrightarrow{b_1}\)×\(\overrightarrow{b_2}\)||...(3)
Comparing \(\overrightarrow{r}\)=\(\overrightarrow{a_1}\)→+λ\(\overrightarrow{b_1}\)→ and \(\overrightarrow{r}\)=\(\overrightarrow{a_2}\)+λ\(\overrightarrow{b_2}\)→ to equations(1) and (2), we obtain
\(\overrightarrow{a_1}\)=\(6\hat i+2\hat j+2\hat k\) \(\overrightarrow{b_1}\)→=\(\hat i+2\hat j+2\hat k\) \(\overrightarrow{a_2}\)=-\(-4\hat i-\hat k\) \(\overrightarrow{b_2}\) = \(3\hat i+2\hat j+2\hat k\)
⇒\(\overrightarrow{a_1}\)-\(\overrightarrow{a_2}\)=(\(-4\hat i-\hat k\))-(\(6\hat i+2\hat j+2\hat k\))=\(-10\hat i-2\hat j-3\hat k\)
⇒\(\overrightarrow{b_1}\)×\(\overrightarrow{b_2}\)=\(\begin{vmatrix} \hat i & \hat j & \hat k\\ 1 & -2 & 2 \\ 3 &-2&-2\end{vmatrix}\)=(4+4)\(\hat i\)-(-2-6)\(\hat k\)=\(8\hat i+8\hat j+4\hat k\)
∴|\(\overrightarrow{b_1}\)×\(\overrightarrow{b_2}\)|
=\(\sqrt{√(8)^2+(8)^2+(4)^2}\)
=12 (\(\overrightarrow{b_1}\)×\(\overrightarrow{b_2}\)).(a2-a1)
=(\(8\hat i+8\hat j+4\hat k\)).(\(-10\hat i-2\hat j-3\hat k\))
=-80-16-12
=-108
Substituting all the values in equation(1), we obtain
d=|-108/12|=9
Therefore, the shortest distance between the two given lines is 9 units.
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]