Let the required ratio be \( m:n \). The section formula gives the coordinates of the point dividing the line segment joining two points \( (x_1, y_1) \) and \( (x_2, y_2) \) in the ratio \( m:n \) as:
\[
x = \frac{m x_2 + n x_1}{m + n}, \quad y = \frac{m y_2 + n y_1}{m + n}.
\]
Given:
- Point \( A(-3, 10) \),
- Point \( B(6, -8) \),
- The point dividing the segment is \( P(-1, 6) \).
Let the ratio be \( m:n \). The coordinates of \( P \) are:
\[
x = \frac{m \times 6 + n \times (-3)}{m + n}, \quad y = \frac{m \times (-8) + n \times 10}{m + n}.
\]
For the x-coordinate:
\[
-1 = \frac{6m - 3n}{m + n}.
\]
For the y-coordinate:
\[
6 = \frac{-8m + 10n}{m + n}.
\]
Now, solve the two equations. Start with the x-coordinate equation:
\[
-1(m + n) = 6m - 3n \quad \Rightarrow \quad -m - n = 6m - 3n \quad \Rightarrow \quad -m - n - 6m + 3n = 0 \quad \Rightarrow \quad -7m + 2n = 0 \quad \Rightarrow \quad 7m = 2n.
\]
Thus, the ratio is:
\[
\frac{m}{n} = \frac{2}{7}.
\]
Conclusion:
The ratio in which the point \( (-1, 6) \) divides the line segment is \( 2:7 \).