Step 1: Compute the probability of exactly one being selected
The probability of exactly one being selected is:
\[
P(\text{Exactly one selected}) = P(R) P(\overline{J}) P(\overline{A}) + P(\overline{R}) P(J) P(\overline{A}) + P(\overline{R}) P(\overline{J}) P(A).
\]
where:
\[
P(R) = \frac{1}{5}, \quad P(J) = \frac{1}{3}, \quad P(A) = \frac{1}{4}.
\]
Their complements:
\[
P(\overline{R}) = \frac{4}{5}, \quad P(\overline{J}) = \frac{2}{3}, \quad P(\overline{A}) = \frac{3}{4}.
\]
Step 2: Substitute the values
\[
P(\text{Exactly one selected}) = \left(\frac{1}{5} \times \frac{2}{3} \times \frac{3}{4} \right) + \left(\frac{4}{5} \times \frac{1}{3} \times \frac{3}{4} \right) + \left(\frac{4}{5} \times \frac{2}{3} \times \frac{1}{4} \right).
\]
Step 3: Compute each term
\[
\frac{1}{5} \times \frac{2}{3} \times \frac{3}{4} = \frac{6}{60}, \quad
\frac{4}{5} \times \frac{1}{3} \times \frac{3}{4} = \frac{12}{60}, \quad
\frac{4}{5} \times \frac{2}{3} \times \frac{1}{4} = \frac{8}{60}.
\]
Summing them up:
\[
P(\text{Exactly one selected}) = \frac{6}{60} + \frac{12}{60} + \frac{8}{60} = \frac{26}{60} = \frac{13}{30}.
\]
Final Result: The probability that exactly one of them is selected is:
\[
\frac{13}{30}.
\]