Question:

Find the position vector of the midpoint of the vector joining the points P(2,3,4) and Q(4,1,2).

Updated On: Jun 23, 2024
  • (A) 3i^+2j^+k^
  • (B) 3i^2j^k^
  • (C) 5i^3j^8k^
  • (D) 5i^3j^+8k^
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Explanation:
Given:The position vector of point P=2i^+3j^+4k^Position Vector of point Q=4i^+j^2k^As we know,The position vector of A(x1,y1,z1) is given byOA=x1i^+y1j^+z1k^ Compute the position vector of the midpoint of P and Q using the formula:If C(x,y,z) is the midpoint of segment AB, then we have the position vector of C=OC=OA+OB2=(x1+x22,y1+y22,z1+z22)The position vector of R which divides PQ in half is given by: r=2i^+3j^+4k^+4i^+j^2k^2r=2i^+3j^+4k^+4i^+j^2k^2r=6i^+4j^+2k^2=3i^+2j^+k^Hence, the correct option is (A).
Was this answer helpful?
2
0