Step 1: Rearrange the given equation.
The given equation is:
\[
2xy + y^2 - 2x^2 \frac{dy}{dx} = 0.
\]
Rearrange to express \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{2xy + y^2}{2x^2}.
\]
Step 2: Separate variables.
Divide through by \( y^2 \) (assuming \( y \neq 0 \)):
\[
\frac{1}{y^2} \, dy = \frac{2x + y}{2x^2} \, dx.
\]
Step 3: Integrate both sides.
- For the left-hand side:
\[
\int \frac{1}{y^2} \, dy = \int y^{-2} \, dy = -\frac{1}{y}.
\]
- For the right-hand side:
Split the fraction:
\[
\int \frac{2x + y}{2x^2} \, dx = \int \frac{2x}{2x^2} \, dx + \int \frac{y}{2x^2} \, dx.
\]
- The first term:
\[
\int \frac{2x}{2x^2} \, dx = \int \frac{1}{x} \, dx = \ln|x|.
\]
- The second term (not dependent on \( y \)):
\[
\int \frac{y}{2x^2} \, dx = \frac{y}{2} \int x^{-2} \, dx = \frac{y}{2} \cdot \left(-\frac{1}{x}\right) = -\frac{y}{2x}.
\]
Step 4: Combine results.
The general solution is:
\[
-\frac{1}{y} = \ln|x| - \frac{y}{2x} + C,
\]
where \( C \) is the constant of integration.
Step 5: Apply the initial condition.
When \( x = 1 \) and \( y = 2 \):
\[
-\frac{1}{2} = \ln|1| - \frac{2}{2 \cdot 1} + C.
\]
Simplify:
\[
-\frac{1}{2} = 0 - 1 + C \quad \Rightarrow \quad C = \frac{1}{2}.
\]
Step 6: Write the particular solution.
Substitute \( C = \frac{1}{2} \) into the general solution:
\[
-\frac{1}{y} = \ln|x| - \frac{y}{2x} + \frac{1}{2}.
\]
Conclusion:
The particular solution is:
\[
\boxed{-\frac{1}{y} = \ln|x| - \frac{y}{2x} + \frac{1}{2}}.
\]