Step 1: Find cumulative frequencies.
\[
7, \; 15, \; 20, \; 40, \; 53, \; 60
\]
Step 2: Calculate total frequency \(N\).
\[
N = 60 \implies \frac{N}{2} = 30
\]
Step 3: Identify median class.
The class whose cumulative frequency first exceeds 30 is 30–40.
Step 4: Apply formula.
\[
\text{Median} = L + \left( \frac{\frac{N}{2} - CF}{f} \right) \times h
\]
Substitute values:
\[
L = 30, \, CF = 20, \, f = 20, \, h = 10
\]
\[
\text{Median} = 30 + \frac{(30 - 20)}{20} \times 10 = 30 + 5 = 35
\]
Step 5: Conclusion.
Hence, the median is \(\boxed{35}\).