Find the median of the following frequency table: 
Step 1: Calculate cumulative frequency. 
Step 2: Identify median class.
Total frequency \( N = 400 \). \[ \frac{N}{2} = 200 \] The cumulative frequency just greater than 200 is 216, so the median class is \( 30–35 \).
Step 3: Use the median formula.
\[ \text{Median} = l + \left(\frac{\frac{N}{2} - cf_{\text{before}}}{f}\right) \times h \] Here, \( l = 30, \; cf_{\text{before}} = 130, \; f = 86, \; h = 5 \).
Step 4: Substitute the values.
\[ \text{Median} = 30 + \left(\frac{200 - 130}{86}\right) \times 5 = 30 + \frac{70}{86} \times 5 \] \[ = 30 + 4.07 = 34.07 \] Step 5: Conclusion.
Hence, the median of the data is \( \boxed{34.07} \).
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]