Find the median of the following frequency distribution: 
Step 1: Find the cumulative frequency (cf). 
Step 2: Identify the median class.
Total frequency \( N = 60 \). \[ \frac{N}{2} = 30 \] The cumulative frequency just greater than 30 is 33, corresponding to the class interval 20–30. Hence, the median class is \( 20 - 30 \).
Step 3: Write the median formula.
\[ \text{Median} = l + \left(\frac{\frac{N}{2} - c}{f}\right) \times h \] where \( l = \) lower boundary of median class = 20
\( c = \) cumulative frequency before median class = 13
\( f = \) frequency of median class = 20
\( h = \) class size = 10
\( N = 60 \)
Step 4: Substitute the values.
\[ \text{Median} = 20 + \left(\frac{30 - 13}{20}\right) \times 10 \] \[ \text{Median} = 20 + \left(\frac{17}{20}\right) \times 10 \] \[ \text{Median} = 20 + 8.5 = 28.5 \] Step 5: Final Answer.
\[ \boxed{\text{Median} = 28.5} \]
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]