Find the median of the following distribution table: 
Step 1: Find cumulative frequency (CF). 
Step 2: Identify the median class.
Total frequency \( n = 18 \). \[ \dfrac{n}{2} = 9 \] The median class is the class where cumulative frequency ≥ 9, i.e., \( 20 - 30 \).
Step 3: Apply the formula.
\[ \text{Median} = L + \left(\dfrac{\dfrac{n}{2} - CF_{before}}{f}\right) \times h \] Here, \( L = 20, CF_{before} = 6, f = 7, h = 10 \). \[ \text{Median} = 20 + \left(\dfrac{9 - 6}{7}\right) \times 10 = 20 + \dfrac{30}{7} = 24.3 \]
Step 4: Conclusion.
Hence, the median of the data is approximately 24.3.
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]