The function given is:
\[
f(x) = -x^3 + 2x^2
\]
To find the maximum value of \( f(x) \) in the interval \( [-1, 1.5] \), we first find the derivative of the function:
\[
f'(x) = \frac{d}{dx}(-x^3 + 2x^2) = -3x^2 + 4x
\]
Next, we set the derivative equal to zero to find the critical points:
\[
-3x^2 + 4x = 0
\]
Factoring:
\[
x(-3x + 4) = 0
\]
This gives two solutions:
\[
x = 0 \quad \text{or} \quad x = \frac{4}{3}
\]
Now, we evaluate the function at the critical points and at the endpoints of the interval \( [-1, 1.5] \):
1. At \( x = -1 \):
\[
f(-1) = -(-1)^3 + 2(-1)^2 = 1 + 2 = 3
\]
2. At \( x = 0 \):
\[
f(0) = -(0)^3 + 2(0)^2 = 0
\]
3. At \( x = \frac{4}{3} \):
\[
f\left(\frac{4}{3}\right) = -\left(\frac{4}{3}\right)^3 + 2\left(\frac{4}{3}\right)^2 = -\frac{64}{27} + \frac{32}{9} = -\frac{64}{27} + \frac{96}{27} = \frac{32}{27} \approx 1.185
\]
4. At \( x = 1.5 \):
\[
f(1.5) = -(1.5)^3 + 2(1.5)^2 = -3.375 + 4.5 = 1.125
\]
Now, comparing these values:
\[
f(-1) = 3, \quad f(0) = 0, \quad f\left(\frac{4}{3}\right) \approx 1.185, \quad f(1.5) = 1.125
\]
The maximum value occurs at \( x = -1 \), and the maximum value is \( \mathbf{3} \).