Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
The profit function is given as p(x) = 41−24x−18x2.
p'(x)=-24-36x
p''(x)=-36
Now,
p'(x)=0=x=-\(-\frac{24}{36}\)=\(-\frac{2}{3}\)
Also,
p'(\(-\frac{2}{3}\))=-36<0
By second derivative test,x=\(-\frac{2}{3}\) is the point of local maxima of p.
= Maximunm profit =p(\(-\frac{2}{3}\))
=41-24(\(-\frac{2}{3}\))-18(\(-\frac{2}{3}\))2
=41+16-8
=49
Hence, the maximum profit that the company can make is 49 units.

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.

There are two types of maxima and minima that exist in a function, such as: