Given the line:
\[
x \cos \theta + y \sin \theta = 1
\]
- X-intercept: put \( y = 0 \Rightarrow x = \frac{1}{\cos \theta} \)
- Y-intercept: put \( x = 0 \Rightarrow y = \frac{1}{\sin \theta} \)
So intercepts are:
\[
A = \left( \frac{1}{\cos \theta}, 0 \right),\quad B = \left( 0, \frac{1}{\sin \theta} \right)
\]
Midpoint \( M \) of \( AB \):
\[
M = \left( \frac{1}{2\cos \theta}, \frac{1}{2\sin \theta} \right)
\]
Let the midpoint coordinates be \( (x, y) \), then:
\[
x = \frac{1}{2\cos \theta} \Rightarrow \cos \theta = \frac{1}{2x}, \quad y = \frac{1}{2\sin \theta} \Rightarrow \sin \theta = \frac{1}{2y}
\]
Use identity:
\[
\cos^2 \theta + \sin^2 \theta = 1
\Rightarrow \left(\frac{1}{2x}\right)^2 + \left(\frac{1}{2y}\right)^2 = 1
\Rightarrow \frac{1}{4x^2} + \frac{1}{4y^2} = 1
\Rightarrow \frac{1}{x^2} + \frac{1}{y^2} = 4 \Rightarrow \boxed{ \frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{4} }
\]