Question:

Find the limit: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot \frac{k}{n} \right) = \]

Show Hint

To solve a Riemann sum, convert it to the corresponding integral and compute the integral.
Updated On: Nov 18, 2025
  • \( \frac{2\pi}{5} \)
  • \( \frac{5}{2} \)
  • \( \frac{2}{5} \)
  • \( \frac{5\pi}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Recognizing the integral form.
The given sum is a Riemann sum for the integral of the function \( \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot x \right) \) over the interval [0, 1]. The Riemann sum approximation for large \( n \) is given by: \[ \sum_{k=1}^{n} \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot \frac{k}{n} \right) \approx n \int_0^1 \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot x \right) dx. \]
Step 2: Solving the integral.
The integral is straightforward: \[ \int_0^1 \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot x \right) dx. \] Using the substitution \( u = \frac{5\pi}{2} \cdot x + \frac{\pi}{2} \), the integral evaluates to \( \frac{2}{5} \).

Step 3: Conclusion.
The limit of the sum is \( \frac{2}{5} \). Thus, the correct answer is (C) \( \frac{2}{5} \).
Was this answer helpful?
0
0

Questions Asked in IIT JAM MA exam

View More Questions