Step 1: Recognizing the integral form.
The given sum is a Riemann sum for the integral of the function \( \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot x \right) \) over the interval [0, 1]. The Riemann sum approximation for large \( n \) is given by:
\[
\sum_{k=1}^{n} \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot \frac{k}{n} \right) \approx n \int_0^1 \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot x \right) dx.
\]
Step 2: Solving the integral.
The integral is straightforward:
\[
\int_0^1 \sin \left( \frac{\pi}{2} + \frac{5\pi}{2} \cdot x \right) dx.
\]
Using the substitution \( u = \frac{5\pi}{2} \cdot x + \frac{\pi}{2} \), the integral evaluates to \( \frac{2}{5} \).
Step 3: Conclusion.
The limit of the sum is \( \frac{2}{5} \). Thus, the correct answer is (C) \( \frac{2}{5} \).