Question:

Find the least number which must be added to each of the following numbers so as to get a perfect square. Also find the square root of the perfect square so obtained. 
  1. 525 
  2.  1750 
  3.  252 
  4.  1825
  5.  6412

Updated On: Nov 30, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) The square root of \(525\) can be calculated by long division method as follows. 

 22
2\(\bar 5\bar 2 \bar 5\)
\(-4\)
42125
84
 41

The remainder is \(41\).
It represents that the square of \(22\) is less than \(525\).
Next number is \(23\) and \(23^2\)\(529\)
Hence, number to be added to \(525 = 232- 525 = 529 - 525 = 4\)
The required perfect square is \(529\) and \(\sqrt{529} = 23\)


(ii) The square root of \(1750\) can be calculated by long division method as follows. 

 41
4\(\bar 1\bar 7 \bar 5\bar0\)
\(-4\)
81150
81
 69

The remainder is \(69\).
It represents that the square of \(41\) is less than \(1750\).
The next number is \(42\) and \(42^2\) = \(1764\)
Hence, number to be added to \(1750\) = 422 \(- 1750 = 1764 - 1750 = 14\)
The required perfect square is \(1764\) and \(\sqrt{1764} = 42\)


(iii) The square root of \(252\) can be calculated by long division method as follows.

 15
1\(\bar 2\bar 5 \bar 2\)
\(-1\)
25152
125
 27

The remainder is \(27\)
It represents that the square of \(15\) is less than \(252\).
The next number is \(16\) and \(162\)
\(256\) 
Hence, number to be added to \(252\) = \(162\)\(- 252 = 256 - 252 = 4\)
The required perfect square is \( 256\) and \(\sqrt{256}\) = \(16\)


(iv) The square root of \(1825\) can be calculated by long division method as follows. 

 42
4\(\bar 1\bar 8 \bar 2\bar5\)
\(-16\)
82225
164
 61

The remainder is \(61\)
It represents that the square of \(42\)

Was this answer helpful?
0
0