We first convert the given circle equation into standard form by completing the square:
\[
x^2 - 4x + y^2 - 2y = 20
\Rightarrow (x - 2)^2 - 4 + (y - 1)^2 - 1 = 20
\Rightarrow (x - 2)^2 + (y - 1)^2 = 25
\]
So, the circle has:
- Center: \( C = (2, 1) \)
- Radius: \( r = \sqrt{25} = 5 \)
Now, find distance from point \( P = (10, 7) \) to the center \( C \):
\[
PC = \sqrt{(10 - 2)^2 + (7 - 1)^2} = \sqrt{64 + 36} = \sqrt{100} = 10
\]
Least distance from point to circle = \( PC - r = 10 - 5 = \boxed{5} \)