Question:

Find the inverse of each of the matrices,if it exists.\(\begin{bmatrix}4&5\\3&4\end{bmatrix}\)

Updated On: Sep 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The correct answer is \(A^{-1}=\begin{bmatrix}4&-5\\-3&4\end{bmatrix}\)
Let \(A=\begin{bmatrix}4&5\\3&4\end{bmatrix}\) We know that \(A = IA\)
so \(\begin{bmatrix}4&5\\3&4\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\implies \begin{bmatrix}1&1\\3&4\end{bmatrix}=\begin{bmatrix}1&-1\\0&1\end{bmatrix}A (R_1\rightarrow R_1-R_2)\)
\(\implies\begin{bmatrix}1&1\\0&1\end{bmatrix}=\begin{bmatrix}1&-1\\-3&4\end{bmatrix} A (R_2\rightarrow R_2-3R_1)\)
\(\implies\begin{bmatrix}1&1\\0&1\end{bmatrix}=\begin{bmatrix}4&-5\\3&4\end{bmatrix} A (R_1\rightarrow R_1-R_2)\)
therefore \(A^{-1}=\begin{bmatrix}4&-5\\-3&4\end{bmatrix}\)
Was this answer helpful?
0
0

Concepts Used:

Invertible matrices

A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In  is an identity matrix of order n × n.

For example,

It can be observed that the determinant of the following matrices is non-zero.