Let A=\(\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)
We know that\(A = IA\)
\(\therefore\) \(\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)= \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) A
⇒ \(\begin{bmatrix} 1 & \frac12 \\ 7 & 4 \end{bmatrix}\)=\(\begin{bmatrix} \frac12 & 0 \\ 0 & 1 \end{bmatrix}\)A (R1\(→\) \(\frac{1}{2}R_1\))
⇒\(\begin{bmatrix} 1 & \frac12 \\ 0 & \frac12 \end{bmatrix}\)=\(\begin{bmatrix} \frac12 &0\\ -\frac72 & 1 \end{bmatrix}\)A (R2→R2-7R1)
⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & \frac12 \end{bmatrix}\)=\(\begin{bmatrix} 4 & -1 \\ -\frac72 & 1 \end{bmatrix}\)A (R1->R1-R2)
⇒ \(\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}\) = \(\begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}\)A (R2->2R2)
\(\therefore\) A-1=\(\begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}\)
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.
