Step 1: Find the derivative of \( f(x) \)
\[
f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3).
\]
Step 2: Solve \( f'(x)<0 \)
Factorize:
\[
f'(x)<0 \implies 4x^2(x - 3)<0.
\]
The critical points are \( x = 0 \) and \( x = 3 \). Analyze the sign of \( f'(x) \) in intervals:
\[
(-\infty, 0), (0, 3), \text and (3, \infty).
\]
Step 3: Determine intervals
\( f'(x)<0 \) on \( (-\infty, 0) \cup (0, 3) \).
Conclusion: The function is strictly decreasing on \( (-\infty, 0) \cup (0, 3) \).