Step 1: Time-shifting property of Fourier Transform:
Let \(f(t) = e^{-t}u(t)\), whose Fourier transform is: \[ F(\omega) = \dfrac{1}{1 + j\omega} \] Now for \(x(t) = f(t - 2) = e^{-(t - 2)}u(t - 2)\), the Fourier transform is: \[ X(\omega) = e^{-j\omega \cdot 2} \cdot \dfrac{1}{1 + j\omega} = \dfrac{e^{-2j\omega}}{1 + j\omega} \]