The equation of the given curve is y=\(\frac{1}{x^2-2x+3}.\)
The slope of the tangent to the given curve at any point (x, y) is given by,
\(\frac{dy}{dx}\) =\(\frac{(-2x-2)}{(x^2-2x+3)^2}\) =\(\frac{-2(x-1)}{(x^2-2x+3)^2}\)
If the slope of the tangent is 0, then we have:
⇒ \(\frac{-2(x-1)}{(x^2-2x+3)^2}\)=0
⇒ -2(x-1)=0
⇒ x=1
When x = 1, y=\(\frac{1}{1-2+3}\) =\(\frac12\).
∴The equation of the tangent through(1,\(\frac12\)) is given by,
y-\(\frac12\)=0(x-1)
y-\(\frac12\)=0
y=\(\frac12\)
Hence, the equation of the required line is y=\(\frac12\)
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
m×n = -1
