The equation of the given curve is y=\(\frac{1}{x^2-2x+3}.\)
The slope of the tangent to the given curve at any point (x, y) is given by,
\(\frac{dy}{dx}\) =\(\frac{(-2x-2)}{(x^2-2x+3)^2}\) =\(\frac{-2(x-1)}{(x^2-2x+3)^2}\)
If the slope of the tangent is 0, then we have:
⇒ \(\frac{-2(x-1)}{(x^2-2x+3)^2}\)=0
⇒ -2(x-1)=0
⇒ x=1
When x = 1, y=\(\frac{1}{1-2+3}\) =\(\frac12\).
∴The equation of the tangent through(1,\(\frac12\)) is given by,
y-\(\frac12\)=0(x-1)
y-\(\frac12\)=0
y=\(\frac12\)
Hence, the equation of the required line is y=\(\frac12\)
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
m×n = -1