Step 1: Write the coordinates of the points.
Let the points be \( A(-2, 6, -6) \), \( B(-3, 10, -9) \), and \( C(-5, -6, -6) \).
Step 2: Find two vectors in the plane.
\[
\overrightarrow{AB} = B - A = (-3 + 2, 10 - 6, -9 + 6) = (-1, 4, -3)
\]
\[
\overrightarrow{AC} = C - A = (-5 + 2, -6 - 6, -6 + 6) = (-3, -12, 0)
\]
Step 3: Find the normal vector to the plane.
The normal vector is the cross product of \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \):
\[
\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-3 & -12 & 0
\end{vmatrix}
\]
\[
\overrightarrow{n} = \hat{i} \left( 4(0) - (-3)(-12) \right) - \hat{j} \left( -1(0) - (-3)(-3) \right) + \hat{k} \left( -1(-12) - 4(-3) \right)
\]
\[
\overrightarrow{n} = \hat{i} (0 - 36) - \hat{j} (0 - 9) + \hat{k} (12 - (-12)) = -36\hat{i} + 9\hat{j} + 24\hat{k}
\]
Thus, the normal vector is \( \overrightarrow{n} = (-36, 9, 24) \).
Step 4: Find the equation of the plane.
The equation of the plane is:
\[
-36(x + 2) + 9(y - 6) + 24(z + 6) = 0
\]
Simplifying:
\[
-36x - 72 + 9y - 54 + 24z + 144 = 0
\]
\[
-36x + 9y + 24z + 18 = 0
\]
Final Answer:
\[
\boxed{-36x + 9y + 24z + 18 = 0}
\]