Step 1: Verify the point lies on the curve:
\[ y = 2 \left( \frac{1}{2} \right)^3 + \left( \frac{1}{2} \right)^2 + 2 = 2 \cdot \frac{1}{8} + \frac{1}{4} + 2 = \frac{2}{8} + \frac{1}{4} + 2 = \frac{1}{4} + \frac{1}{4} + 2 = 2. \] Point \( \left( \frac{1}{2}, 2 \right) \) satisfies the curve.
Step 2: Find the slope of the tangent (derivative at \( x = \frac{1}{2} \)):
\[ \frac{dy}{dx} = \frac{d}{dx} (2x^3 + x^2 + 2) = 6x^2 + 2x. \] At \( x = \frac{1}{2} \):
\[ \frac{dy}{dx} = 6 \left( \frac{1}{2} \right)^2 + 2 \cdot \frac{1}{2} = 6 \cdot \frac{1}{4} + 1 = \frac{3}{2} + 1 = \frac{5}{2}. \]
Step 3: Equation of tangent using point-slope form \( y - y_1 = m (x - x_1) \):
\[ y - 2 = \frac{5}{2} \left( x - \frac{1}{2} \right) \Rightarrow y - 2 = \frac{5}{2} x - \frac{5}{4}. \] \[ y = \frac{5}{2} x - \frac{5}{4} + 2 = \frac{5}{2} x - \frac{5}{4} + \frac{8}{4} = \frac{5}{2} x + \frac{3}{4}. \] Answer: \( y = \frac{5}{2} x + \frac{3}{4} \).
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.