The equation of the given curve is y=\(\frac{1}{x-3},\) x≠3.
The slope of the tangent to the given curve at any point (x, y) is given by,
\(\frac{dy}{dx}\)=\(-\frac{1}{(x-3)^2}\)
If the slope of the tangent is 2, then we have:
\(-\frac{1}{(x-3)^2}\)= 2
2(x-3)2 =-1
(x-3)2=\(-\frac12\)
This is not possible since the L.HS. is positive while the R.H.S. is negative.
Hence, there is no tangent to the given curve having slope 2.
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?
m×n = -1