The equation of the given curve is y=\(\frac{1}{x-3},\) x≠3.
The slope of the tangent to the given curve at any point (x, y) is given by,
\(\frac{dy}{dx}\)=\(-\frac{1}{(x-3)^2}\)
If the slope of the tangent is 2, then we have:
\(-\frac{1}{(x-3)^2}\)= 2
2(x-3)2 =-1
(x-3)2=\(-\frac12\)
This is not possible since the L.HS. is positive while the R.H.S. is negative.
Hence, there is no tangent to the given curve having slope 2.

m×n = -1
