Step 1: Write plane equation in Cartesian form.
\[
6x - 3y + 2z = 4
\]
Step 2: Distance formula.
For a point $(x_1,y_1,z_1)$ and plane $ax+by+cz+d=0$,
\[
D = \frac{|ax_1+by_1+cz_1+d|}{\sqrt{a^2+b^2+c^2}}
\]
Here, $a=6$, $b=-3$, $c=2$, $d=-4$, and point $(2,5,-3)$.
Step 3: Substitute values.
\[
D = \frac{|6(2) - 3(5) + 2(-3) - 4|}{\sqrt{6^2+(-3)^2+2^2}}
\]
\[
= \frac{|12 - 15 - 6 - 4|}{\sqrt{36+9+4}}
\]
\[
= \frac{|-13|}{\sqrt{49}} = \frac{13}{7}
\]
Final Answer: \[ \boxed{\dfrac{13}{7}} \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $